You are currently viewing Bachelor of Science Biotechnology (CBT) – Chemistry, Botany, Biotechnology Smart Girl

Bachelor of Science Biotechnology (CBT) – Chemistry, Botany, Biotechnology Smart Girl

Courtesy : Bachelor of Science Biotechnology (CBT) – Chemistry, Botany, Biotechnology Smart Girl

Factors affecting biodegradation rate

440px Decomposition rates of marine debris items OWID.svg

Average estimated decomposition times of typical marine debris items. Plastic items are shown in blue.

In practice, almost all chemical compounds and materials are subject to biodegradation processes. The significance, however, is in the relative rates of such processes, such as days, weeks, years or centuries. A number of factors determine the rate at which this degradation of organic compounds occurs. Factors include light, water, oxygen and temperature. The degradation rate of many organic compounds is limited by their bioavailability, which is the rate at which a substance is absorbed into a system or made available at the site of physiological activity, as compounds must be released into solution before organisms can degrade them. The rate of biodegradation can be measured in a number of ways. Respirometry tests can be used for aerobic microbes. First one places a solid waste sample in a container with microorganisms and soil, and then aerates the mixture. Over the course of several days, microorganisms digest the sample bit by bit and produce carbon dioxide – the resulting amount of CO2 serves as an indicator of degradation. Biodegradability can also be measured by anaerobic microbes and the amount of methane or alloy that they are able to produce. # ISo certification in India

It’s important to note factors that affect biodegradation rates during product testing to ensure that the results produced are accurate and reliable. Several materials will test as being biodegradable under optimal conditions in a lab for approval but these results may not reflect real world outcomes where factors are more variable. For example, a material may have tested as biodegrading at a high rate in the lab may not degrade at a high rate in a landfill because landfills often lack light, water, and microbial activity that are necessary for degradation to occur. Thus, it is very important that there are standards for plastic biodegradable products, which have a large impact on the environment. The development and use of accurate standard test methods can help ensure that all plastics that are being produced and commercialized will actually biodegrade in natural environments. One test that has been developed for this purpose is DINV 54900.# ISo certification in India

Plastics

Main article: Biodegradable plastic § Examples of biodegradable plastics

The term Biodegradable Plastics refers to materials that maintain their mechanical strength during practical use but break down into low-weight compounds and non-toxic byproducts after their use. This breakdown is made possible through an attack of microorganisms on the material, which is typically a non-water-soluble polymer. Such materials can be obtained through chemical synthesis, fermentation by microorganisms, and from chemically modified natural products. # ISo certification in India

Plastics biodegrade at highly variable rates. PVC-based plumbing is selected for handling sewage because PVC resists biodegradation. Some packaging materials on the other hand are being developed that would degrade readily upon exposure to the environment. Examples of synthetic polymers that biodegrade quickly include polycaprolactone, other polyesters and aromatic-aliphatic esters, due to their ester bonds being susceptible to attack by water. A prominent example is poly-3-hydroxybutyrate, the renewably derived polylactic acid. Others are the cellulose-based cellulose acetate and celluloid (cellulose nitrate).# ISo certification in India

150px Polylactid sceletal.svg

Polylactic acid is an example of a plastic that biodegrades quickly.

Under low oxygen conditions plastics break down more slowly. The breakdown process can be accelerated in specially designed compost heap. Starch-based plastics will degrade within two to four months in a home compost bin, while polylactic acid is largely undecomposed, requiring higher temperatures. Polycaprolactone and polycaprolactone-starch composites decompose slower, but the starch content accelerates decomposition by leaving behind a porous, high surface area polycaprolactone. Nevertheless, it takes many months. # ISo certification in India

In 2016, a bacterium named Ideonella sakaiensis was found to biodegrade PET. In 2020, the PET degrading enzyme of the bacterium, PETase, has been genetically modified and combined with MHETase to break down PET faster, and also degrade PEF. In 2021, researchers reported that a mix of microorganisms from cow stomachs could break down three types of plastics. # ISo certification in India

Many plastic producers have gone so far even to say that their plastics are compostable, typically listing corn starch as an ingredient. However, these claims are questionable because the plastics industry operates under its own definition of compostable:”that which is capable of undergoing biological decomposition in a compost site such that the material is not visually distinguishable and breaks down into carbon dioxide, water, inorganic compounds and biomass at a rate consistent with known compostable materials.” (Ref: ASTM D 6002)# ISo certification in India

The term “composting” is often used informally to describe the biodegradation of packaging materials. Legal definitions exist for compostability, the process that leads to compost. Four criteria are offered by the European Union:

  1. Chemical composition: volatile matter and heavy metals as well as fluorine should be limited.
  2. Biodegradability: the conversion of >90% of the original material into CO2, water and minerals by biological processes within 6 months.
  3. Disintegrability: at least 90% of the original mass should be decomposed into particles that are able to pass through a 2×2 mm sieve.
  4. Quality: absence of toxic substances and other substances that impede composting.