You are currently viewing Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics) Case Study

Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics) Case Study

Courtesy : Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics) Case Study

Number theory

Main article: Number theory

220px Spirale Ulam 150

This is the Ulam spiral, which illustrates the distribution of prime numbers. The dark diagonal lines in the spiral hint at the hypothesized approximate independence between being prime and being a value of a quadratic polynomial, a conjecture now known as Hardy and Littlewood’s Conjecture F.

Number theory began with the manipulation of numbers, that is, natural numbers {\displaystyle (\mathbb {N} ),}{\displaystyle (\mathbb {N} ),} and later expanded to integers {\displaystyle (\mathbb {Z} )}{\displaystyle (\mathbb {Z} )} and rational numbers {\displaystyle (\mathbb {Q} ).}{\displaystyle (\mathbb {Q} ).} Number theory was once called arithmetic, but nowadays this term is mostly used for numerical calculations Number theory dates back to ancient Babylon and probably China. Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria. The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss. # ISO Certification in India

Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is Fermat’s Last Theorem. This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles, who used tools including scheme theory from algebraic geometry, category theory, and homological algebra. Another example is Goldbach’s conjecture, which asserts that every even integer greater than 2 is the sum of two prime numbers. Stated in 1742 by Christian Goldbach, it remains unproven despite considerable effort.

Number theory includes several subareas, including analytic number theory, algebraic number theory, geometry of numbers (method oriented), diophantine equations, and transcendence theory (problem oriented).# ISO Certification in India

Geometry

Main article: Geometry

Triangles spherical geometry

On the surface of a sphere, Euclidian geometry only applies as a local approximation. For larger scales the sum of the angles of a triangle is not equal to 180°.

Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines, angles and circles, which were developed mainly for the needs of surveying and architecture, but has since blossomed out into many other subfields.

A fundamental innovation was the ancient Greeks’ introduction of the concept of proofs, which require that every assertion must be proved. For example, it is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results (theorems) and a few basic statements. The basic statements are not subject to proof because they are self-evident (postulates), or are part of the definition of the subject of study (axioms). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements. # ISO Certification in India

The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane (plane geometry) and the three-dimensional Euclidean space.

Euclidean geometry was developed without change of methods or scope until the 17th century, when René Descartes introduced what is now called Cartesian coordinates. This constituted a major change of paradigm: Instead of defining real numbers as lengths of line segments (see number line), it allowed the representation of points using their coordinates, which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically. # ISO Certification in India

Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions, the study of which led to differential geometry. They can also be defined as implicit equations, often polynomial equations (which spawned algebraic geometry). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions. # ISO Certification in India

In the 19th century, mathematicians discovered non-Euclidean geometries, which do not follow the parallel postulate. By questioning that postulate’s truth, this discovery has been viewed as joining Russel’s paradox in revealing the foundational crisis of mathematics. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem. In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space.

Today’s subareas of geometry include:

  • Projective geometry, introduced in the 16th century by Girard Desargues, extends Euclidean geometry by adding points at infinity at which parallel lines intersect. This simplifies many aspects of classical geometry by unifying the treatments for intersecting and parallel lines.
  • Affine geometry, the study of properties relative to parallelism and independent from the concept of length.
  • Differential geometry, the study of curves, surfaces, and their generalizations, which are defined using differentiable functions.
  • Manifold theory, the study of shapes that are not necessarily embedded in a larger space.
  • Riemannian geometry, the study of distance properties in curved spaces.
  • Algebraic geometry, the study of curves, surfaces, and their generalizations, which are defined using polynomials.
  • Topology, the study of properties that are kept under continuous deformations.
    • Algebraic topology, the use in topology of algebraic methods, mainly homological algebra.
  • Discrete geometry, the study of finite configurations in geometry.
  • Convex geometry, the study of convex sets, which takes its importance from its applications in optimization.
  • Complex geometry, the geometry obtained by replacing real numbers with complex numbers.# ISO Certification in India