You are currently viewing Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics)Design and Development

Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics)Design and Development

Courtesy : Bachelor of Science Mathematics- PCM (Physics, Chemistry, Mathematics)Design and Development

Relationship with sciences

Mathematics is used in most sciences for modeling phenomena, which then allows predictions to be made from experimental laws. The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model. Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used. For example, the perihelion precession of Mercury could only be explained after the emergence of Einstein’s general relativity, which replaced Newton’s law of gravitation as a better mathematical model. # ISO certification in India

There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation. In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied “durch planmässiges Tattonieren” (through systematic experimentation). However, some authors emphasize that mathematics differs from the modern notion of science by not relying on empirical evidence. # ISO certification in India

Pure and applied mathematics

Main articles: Applied mathematics and Pure mathematics

Isaac Newton
Gottfried Wilhelm von Leibniz

Isaac Newton (left) and Gottfried Wilhelm Leibniz developed infinitesimal calculus.

Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of technology and science, and there was no clear distinction between pure and applied mathematics. For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, Isaac Newton introduced infinitesimal calculus for explaining the movement of the planets with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians. However, a notable exception occurred with the tradition of pure mathematics in Ancient Greece. # ISO certification in India

In the 19th century, mathematicians such as Karl Weierstrass and Richard Dedekind increasingly focused their research on internal problems, that is, pure mathematics. This led to split mathematics into pure mathematics and applied mathematics, the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.

The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere. Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the “pure theory”. # ISO certification in India

An example of the first case is the theory of distributions, introduced by Laurent Schwartz for validating computations done in quantum mechanics, which became immediately an important tool of (pure) mathematical analysis. An example of the second case is the decidability of the first-order theory of the real numbers, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high. For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry.# ISO certification in India

In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas. The Mathematics Subject Classification has a section for “general applied mathematics” but does not mention “pure mathematics”. However, these terms are still used in names of some university departments, such as at the Faculty of Mathematics at the University of Cambridge. # ISO certification in India

Unreasonable effectiveness

The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner. It is the fact that many mathematical theories, even the “purest” have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced. Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.

A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem. A second historical example is the theory of ellipses. They were studied by the ancient Greek mathematicians as conic sections (that is, intersections of cones with planes). It is almost 2,000 years later that Johannes Kepler discovered that the trajectories of the planets are ellipses. # ISO certification in India

In the 19th century, the internal development of geometry (pure mathematics) lead to define and study non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the theory of relativity that uses fundamentally these concepts. In particular, spacetime of the special relativity is a non-Euclidean space of dimension four, and spacetime of the general relativity is a (curved) manifold of dimension four.

A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the positron and the baryon {\displaystyle \Omega ^{-}.}{\displaystyle \Omega ^{-}.} In both cases, the equations of the theories had unexplained solutions, which led to conjecture the existence of a unknown particle, and to search these particles. In both cases, these particles were discovered a few years later by specific experiments. # ISO certification in India